[time 692] Re: [time 691] Re: [time 690] Re: [time 689] Re: [time 688] Re: [time 687] Re: [time 686] Time operator?

Hitoshi Kitada (hitoshi@kitada.com)
Mon, 6 Sep 1999 18:58:30 +0900

Dear Stephen,

The local time t can be thought as a canonical conjugate to H in the following

For the state vector Psi(t) of an LS, say L, the Scroedinger equation holds

h d
- -- Psi(t) + H Psi(t) = 0. (h being the Planck constant/(2 pi) )
i dt

(Recall that the local time t is defined so that this equation becomes the
identity. I.e. the local time t is defined as the exponent t of exp(-itH).
Thus the state vector

Psi(t) = exp(-itH) Psi(0)

of L (with the initial state Psi(0) ) automatically satisfies the above

Define an operator T equal to

h d
- --
i dt

Then the Schroedinger equation (identity) becomes

T Psi(t) + H Psi(t) = 0.

Thus every state vector Psi(t) of L is identically a solution of the
Scroedinger equation with Hamiltonian H, and we have on such states

T = -H. (*)

This T clearly satisfies

i[T, t] = h.

In this sense, T is a canonical conjugate to t. H is related with T by the
above relation (*), which holds identically on the state vectors of L. This
means H (restricted to the space of the state vectors of L) is a canonical
conjugate to t.

Best wishes,

This archive was generated by hypermail 2.0b3 on Sat Oct 16 1999 - 00:36:39 JST